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Summary

Meta-analytic approaches that assess sources of variation can enhance the

usefulness of non-randomized evidence in a cross-design synthesis. In this

paper we estimate heterogeneity in treatment effects associated with dif-

ferent classes of controlled clinical trials. Variance component models are

provided for analysis of reported summary statistics when individual case

data may not be available. The methodology assists the appropriate weight-

ing of studies, whether randomized or observational, when over-dispersion of

trial effects is observed. We evaluate sources of variation among controlled

trials in estimates of elevation of risk of invasive breast cancer following hor-

mone replacement therapy (HRT). Variation in results among case-control,

prospective, and other non-randomized results is examined and comparison

made with effects in two recent large randomized clinical trials.
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1. Introduction

While randomized evidence remains the gold standard for comparisons of

medical interventions, there is often a considerable amount of non-randomized

evidence that could contribute information for such comparisons. The prob-

lem with making use of such information is that the choice of treatment

in observational studies may be confounded by other factors that impact

prognosis, such as disease stage, access to care or demographic factors. The

consequence of this confounding is a bias in estimates of treatment differ-

ences. While such biases are difficult to identify from any individual study,

meta-analytic approaches that combine evidence across a range of studies,

both randomized and observational, make it possible to test for the presence

of specific effects and therefore enhance the usefulness of non-randomized

studies in estimating treatment effects.

There are many sources of variability in estimated study effects. Selection

and treatment allocation biases introducing confounding in an observational

study will result in the study estimating the wrong treatment effect, while in

randomized controlled trials sources of variability in the population recruited

to the study and bias due to lack of treatment concealment and differential

dropout can introduce specific study effects. Limiting the trials selected for

meta review – by varying selection criteria – may limit the introduction of

bias but may also lower precision by restricting evidence available. A classic

variance-bias tradeoff results.
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Schultz, Chalmers, Hayes and Altman (1995) determined a 41% exager-

ation of treatment effect in the absence of treatment concealment. Levels

of compliance and dropout may differ in populations recruited to studies.

Egger and Smith (1997) and Sterne, Gavaghan and Egger (2000) demon-

strate other specific study effects introducing variability in the treatment

effect: differences in underlying risk of the outcome and size and quality of

the study.

This paper investigates meta-analytic approaches for combining evidence

across studies when only study-level data (but not individual patient-level

data) are available. While access to patient-level data provides the most

information for combining across studies, obtaining such data may be difficult

and the resources required to create large unified databases from independent

studies can be prohibitive.

Our approach is based on the notion that information about variability

across studies comes from two different sources. Information about variabil-

ity within trials is provided by the standard errors of the treatment effect

estimates; while information about variability across trials is provided by the

variances in the estimated treatment effects across these studies. Identify-

ing sources of variation in reported outcomes and appropriate adjustment

for specific variation is conducted within a mixed effects model formulation

for observed treatment differences. These models include a random effect of

treatment and both fixed and random terms for specific effects associated

with the study class.

Section 2 presents the linear mixed effects (LME) models and discusses

the conditions required for identifiability. Section 3 summarizes approaches
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for inference and estimation. Section 3.2 describes the estimation procedures

for model parameters and Section 4 provides a data example.

2. Models

2.1 Stratified analysis of variability in treatment effect by study

It is useful to begin by considering measurements on each individual in

the “raw” data sets available. The implications for use of summary statistics

Y substituting for the full analysis will then be discussed.

Specify a mixed-effects meta-analysis model:

Yjk = µ1 + bj1 + ejk, k = 1, . . . , nj1

= µ2 + bj2 + ejk, k = nj1 + 1, . . . , nj1 + nj2 (1)

for j = 1, . . . ,m.1 Here Yjk is the response in individual k in study j, µ1 and µ2

are fixed effects, bj1, bj2 are random effects associated with the specific trial j

(due to variation from other studies in responses measured in its study popu-

lation and any biases present in that measurement) and with each arm of this

study and ejk is the random variability associated with the response of indi-

vidual k. Of interest is the average treatment effect, δ = µ2−µ1. However the

observed treatment difference is not only affected by random measurement

variability, but also other sources of variation, including potential biases.

The trial specific variations from the average treatment effect δ are ran-

dom effects, uj = bj2 − bj1. These trial specific effects are assumed to be

a random sample from a normal distribution with mean 0 and variance σ2
1.

1This model may be expressed as Yijk = µ+ δi + bij + eijk, where i = 1, 2 are

the two arms of the study
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Specific effects are independent of the sampling errors {ejk}. Errors ejk in

study j are assumed to have mean 0 and variance σ2
0j.

Observations in study j are Normally distributed with estimate Yj =

Ȳj2 − Ȳj1 of the treatment effect δ available from each study dataset.

In many meta analyses (e.g. those based on systematic reviews of the

literature), ‘raw’ data Yjk is not available but summary measures, such as

the means Yj, can be analysed. Under model (1) above,

Yj = Ȳ2j − Ȳ1j = δ + uj + ej, (2)

where ej = ēj2− ēj1, the error in the estimated treatment effect in study j, is

distributed N(0, v0j). Here δ is an overall effect of treatment, with random

effect uj varying the treatment comparison due to specific study effects, and

v0j = σ2
0j (1/nj1 + 1/nj2) is the variance of the estimate of treatment effect

in study j.

In equation (2) δ is the expected treatment benefit. This expected treat-

ment benefit and the between study variability σ2
1 are of interest; pooled

estimation of δ using weighted least squares is natural.

Various assumptions in the model above will need further generalization

for more complex circumstances. More complex models involve some or more

of the following features: more variance components; study stratification to

allow for different treatment effects (still uniform within strata); other study

level covariate information defining confounders. We will consider additional

variance components in Section 2.5.

The model above may be applied within individual strata (subgroups of

trials) within a meta analysis, e.g. within strata comprising randomized and
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non-randomized studies or within strata comprising randomized studies of

low and high quality, however defined. Following stratification, the model

terms δ, uj, ej are all specific to the strata and it will be of interest to test

the homogeneity of δ in different strata.

Models (1) and (2) are special cases of well known general models Harville

(1977), Laird and Ware (1982), Laird, Lange and Stram (1987) with linear

mixed effects. Stram (1996) provides a framework for the meta-analysis of

published data and generalizes some earlier models. Stram’s model decom-

poses the variation in effects measured in different studies into sampling and

non-sampling sources. See also Searle et al. (1992, Chapter 6) and McLach-

lan and Krishnan (1997), Chapter 5.9, for reviews of variance component

methods applicable in meta-analysis contexts.

Two representations of random effects models are available as generaliza-

tions of the model (2). These forms are the Laird-Ware form

yj = Xjβj + Zjbj + ej (3)

and the random effects model form adopted by Searle:

y = Xβ +
p
∑

i=1

Ziui + e (4)

involving matrices X and Z of known constants. While similar, these forms

are not equivalent, Searle’s form being more convenient for our purpose.

These generalizations permit inclusion of further adjustments for covariates

with both fixed and random effects, as will be illustrated in later sections.

With small studies it may be necessary to pool sample variances of small

studies. Pooled variance estimates are based on an assumption v2
0j = σ2

0 rj,

with rj > 0 known. It will usually suffice to make a plausible assumption
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specifying the relative precision of small studies. For example, we might

assume variance homogeneity of small studies. A pooled estimate of variance

will then be available with pooled degrees of freedom. When pooled degrees

of freedom are large, σ2
0 can be assumed known.

Within a stratum (such as non-randomized trials, or studies of a com-

mon assessed level of ‘quality’) maximum likelihood (ML) or restricted ML

(REML) estimates of (µ, σ2
1, σ

2
0) are available. As noted above, these param-

eters are permitted to vary between strata, e.g. they may differ between

randomized and non-randomized strata.

2.2 Identifiability

No matter how large the trials, mean effects alone carry very little infor-

mation (roughly 1 degree of freedom per trial) concerning variance compo-

nents. Only their common expected value δ and the variances

Vj = Var(Yj) = σ2
0j(

1

nj1
+

1

nj2
) + σ2

1

are directly estimable from the means alone. For example, when Y1, . . . , YN

share a common variance, the variance σ2
0 of the estimated effect and random

effect variance σ2
1 are separately non-identifiable (though their sample vari-

ance always provides an upper bound for the between-study variation σ2
1).

The means alone generally provide a poor estimate of σ2
1.

Additional data, the standard errors and sample sizes commonly available

in systematic reviews, resolve any non-identifiability by specifying variances

v0j of ej from within-trial estimates of variance.

Published estimates of treatment differences and their standard errors

provide these summary statistics which improve the precision of estimating
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random effects. If the method of determining confidence intervals is known,

standard errors not stated can usually be determined from confidence inter-

vals.

2.3 Stratified model with odds ratios

Random effect models can readily be adapted for use with event count

response data DerSimonian and Laird (1986). Consider dichotomous out-

comes in two trial arms. Then, setting Yj as the log odds ratio of positive

response in the two arms, a confidence interval for the trial specific log odds

ratio logωj is commonly reported. This interval readily provides the point

estimate Yj and its variance v0j.

Model (2) is then applicable, with k = 1 and Var(ej) = v0j known.

An alternative model proposed in Begg and Pilote (1991) adopts a random

baseline common to the two study arms with treatment effect being a fixed

effect across studies, unlike the variation in treatment effect specified in the

model of der Simonian and Laird.

2.4 Stratified models: testing homogeneity of study effect

Model (2) permits stratified analysis of results, as in meta analysis in-

cluding randomized and non-randomized subgroups of trials. The analysis is

repeated separately in subgroups.

Thus the mean and the variance of specific effects may be estimated for

trials within each stratum. The lack of fit of this model may be compared

with that of a single fit to all studies and a formal test of heterogeneity of

means and/or variance components obtained. (The likelihood ratio test for

a comparison of models is described in a later section).
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When evidence of heterogeneity between subgroups is evident we consider

further models intermediate between homogeneous and stratified assump-

tions, as such models permit pooling of information from the subgroups.

2.5 Intermediate models: common study effects

Were study effects to vary randomly around the same mean (µ = δ1 = δ2)

in both randomized and non-randomized subgroups, in which variances of the

specific effects differed, then a weighted pooled estimate would better esti-

mate the true effect δ. Restrictions such as this introduced in the stratified

model can permit the non-randomized evidence to be informative in estimat-

ing the true effect of treatment.

The true effect of treatment may be assumed identical with the parameter

µ in a stratum designated the gold standard, perhaps a class of randomized

clinical trials, for example. The additional assumption is required to relate

population parameters among other strata (such as non-randomized trials)

to the corresponding parameters (µ, σ2
1) in the designated stratum. Without

some relationship, other strata cannot be informative.

In general we would expect the variability in the non-randomized studies

to be greater than that for randomized studies, because only randomized

studies control for confounding factors. If the impact of confounding factors

differs across non-randomized studies then this effect would add to the vari-

ability in such studies. However, it would also be possible for the variability

in non-randomized studies to be smaller than for the randomized studies. If,

for example, non-randomized studies were more homogeneous in their study

populations (and therefore in factors that independently predict the clinical

endpoint, or interact with treatment in affecting the development of the clin-
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ical endpoint) than were the randomized studies, this effect could reduce the

variability in the non-randomized studies. In addition, if the non-randomized

studies were consistent in the effect of the confounding factors, this consis-

tency would introduce a bias relative to the non-randomized studies, rather

than an increased variability.

For example, suppose we are considering the relative benefit of two treat-

ments, one of which is more expensive outside of the randomized trial setting.

Suppose that in the all of the non-randomized studies people with higher in-

comes and better access to medical treatment were more likely to receive the

more expensive treatment under study. This effect might well induce a bias in

the estimated treatment effect, but would not increase the variability across

non-randomized studies. In fact this effect could even reduce this variability

in the non-randomized studies compared to those that were randomized, if

income also is a predictor of the clinical endpoint.

In settings where we do expect (or detect) greater variability in some

strata (e.g. non-randomized studies) the expected greater variability in es-

timating treatment effects in any other stratum we can introduce additional

random effects specific to strata other than the reference stratum. Each extra

random effect introduces higher variability (a variance inflation) in treatment

differences in strata in which it is included.

To illustrate one such plausible model assumption relating different strata,

consider the specification of equal expected treatment effects (µ = δ1 = δ2)

in randomized and non-randomized populations of trials:

E(yj|u) = µ+ uj1, so yj ∼ N(µ, σ2
1), for j ∈ R (5)

E(yj|u) = µ+ uj1 + uj2, so yj ∼ N(µ, σ2
1 + σ2

2), for j ∈ NR.
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Here R indexes the designated stratum, randomized trials, and NR another

stratum, here non-randomized trials. Measurement variances v0j, as before,

are assumed known.

Note the assumption introduced that the expected bias in non-randomized

studies is zero; other random effects models could be considered that utilize

other knowledge in forming model assumptions about average specific ef-

fects (or biases) in other classes of trials (or postulate relationships between

variances of random effects).

Equation (5), which introduces a second random effect component (uj2

above), represents a development of model (2). The constrained model is a

specific case of the variance component formulation described in Searle et al.

(1992). Here

y = Xµ+
2
∑

i=1

Ziui + e,

where u1 = (u11, . . . , u1N)T and u2 = (u2N1+1, . . . , u2N)T , X is an arbitrary

design matrix for fixed effects, Z1 is an NxN identity matrix and Z2 =
[

0T
...I
]T

is N×N2, with N = N1 +N2. Here Z2 is a partitioned design matrix

with a block of zeros of dimension N1xN2 for the N1 studies in stratum 1, and

an identity matrix of dimension N2 corresponding to studies in stratum 2.

The error vector e ∼ N (0, V0) with V0 diagonal with elements v0j, j =

1, . . . , N .

Upon standardizing the outcomes (y? = V
−1/2

0 y), this model is repre-

sented in a standard form – Searle et al. (1992), equation (6.2) – with

observations with measurement error variance 1.

Another class of models are those of Laird and Ware (1982). The imme-

11



diate generalization of model (2) for patient level data in this class is:

yj = Xjµ+ Zjbj + ej, for j = 1, . . . ,M = (N1 +N2).

For j = 1, . . . , N1, N1 + 1, . . . , N1 + N2; let yj be the nj-vector containing

observations on effect in study j. Set Xj = 1nj , a vector of ones, µ to be

a scalar, bj = (bj1, bj2)T and Zj to be a matrix of dimension M x 2. Also

set each of the first N1 rows of Z to [1, 0], and the remaining N2 rows to

[1, 1]. The random effect bj2 is an additional variance component. In non-

randomized trials this effect inflates variability among this group of trials.

Adopting the standard assumptions of the Laird-Ware model

var(ej) = σ2
0 rj Inj (6)

var(bj) = D, (7)

where In denotes the nxn identity matrix and D is a 2x2 covariance matrix

with variances σ2
1, σ

2
2 and covariance σ2

12. Estimation of (µ,D) will pro-

vide the true effect and variances by fixing relative weights applicable to the

individual study effects observed in different trials.

Note that the Searle and Laird-Ware formulations differ in that the Laird-

Ware model introduces unnecessary and inestimable random effects bj2 for

studies j in the reference stratum. Searle’s random effects model and EM

algorithm allow numbers of random effects in the first and second random

components to differ.

The Laird-Ware model is often formulated with a general non-diagonal

covariance matrix D. However, in this context, direct inspection of the like-

lihood demonstrates that the structure of D is non-identifiable. Only σ2
1 and
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σ2
2 + 2σ12 is estimable. In these circumstances, it is convenient for us to

assume independence of the random effects, as we do hereafter.

3. Inference and Estimation

In any of the models presented above the log-likelihood L is conveniently

expressed as

−2L =
∑

j

log(Vj) +
∑

j

(yj − µ)2

Vj

where Vj represents the variance of the treatment summary outcome in trial

j according to the model. For example, in Searle’s formulation:

Vj = vj0 + σ2
1 for j = 1, . . . , N1 (8)

= vj0 + σ2
1 + σ2

2 for j = (N1 + 1), . . . , N

3.1 Inference

Nested models may readily be compared by comparison of log-likelihoods,

once variance parameters are estimated. The resulting difference in twice log-

likelihood, denoted by −2∆l in our applications, should be compared with

half the tabled value for chi-square with degrees of freedom the number of

extra variance parameters; see Stram and Lee (1994).

3.2 Estimation

3.2.1 Laird-Ware model form The Maximum Likelihood (ML) for model

(2) estimators may readily be obtained using the EM algorithm of Laird and

Ware (1982) for the mixed effect model

yj = Xjβ + Zjbj + ej, for j = 1, . . . , N, (9)

where bj, corresponding to uj in (2), is a random effect for observations in-

dexed by j. Here parameters β and {bj} refer to a single stratum; estimation
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may be repeated within each stratum.

Equation (2) is readily reduced to a canonical form with observations of

equal variance. Setting yj = Yj/
√
rj, β = δ,Xj = 1/

√
rj, Zj = 1/

√
rj and

substituting ẽj = ej/
√
rj the model becomes (9) with uj ∼ N(0, D) and

ẽj ∼ N(0, σ2
0).

A similar rescaling is required for the case of binary outcomes, where

der Simonian’s approach adopts the same model for the log odds-ratio in

study j.

The application of an EM algorithm to this canonical Laird-Ware form is

standard.

With more general models involving additional random effects, EM esti-

mation is again available once the design structure is specified by choice of

design matrices Xj and Zj. The interested reader is directed to McLachlan

Ch. 5.9.1.

3.2.2 Searle’s random effects model Searle’s model form is readily adapted

to models with either one or two random effect components in each study.

The use of an EM algorithm in the fitting of parameters in this class of

model is described in Searle, Chapter 8.3. The application of the EM algo-

rithm from first principles is straightforward in this context. EM specifies

weighted least squares estimation of µ and weighted residual sums of squares

estimates for σ2
1 and σ2

2 using weights inverse to the current estimates of the

variances defined in equation (8).
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3.2.3 Prediction Best linear unbiased prediction (BLUP) of individual

random (specific) effects is readily available in variance component models.

Thus improved estimates of odds ratios for individual studies may be pro-

vided. Our approach is described in Searle, Chapter 7.4.

4. Relationship between use of hormone replacement therapy and

risk of breast cancer

The increased risk of breast cancer resulting from use of hormone replace-

ment therapy (HRT) has been settled only quite recently, and review of the

large numbers of studies and the consistency of conclusions reported in the

numerous studies are considered of interest.

A systematic review HBFC Group (1997) conducted by the Collabora-

tive Group on Hormonal Factors in Breast Cancer (HFBC) appeared in the

Lancet in 1997. This paper presented a meta analysis of results of 51 epidemi-

ological studies of the relationship use of HRT in post-menopausal women

and between breast cancer. Since that time two large randomized clinical tri-

als have closed and reported findings while other non-randomized controlled

trials have appeared in the literature.

Findings of the review and later studies indicated increased relative risk

of diagnosis of breast cancer among current or recent users of HRT.

The meta analysis indicated that this excess risk increases with dura-

tion of use but reduces after cessation of use and appears to have largely

disappeared after about 5 years. Strong potential for confounding exists in

observational studies between the timing of the menopause and use of HRT.

Failure to take time since menopause into account leads to substantial un-

derestimation of the risk of breast cancer associated with the use of HRT.
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BMI is also a potential confounder. Biases may be present in some studies

due to earlier diagnosis and differential reporting of use of HRT. Most (87%)

current or recent users in the meta analysis had begun use within 5 years

of the menopause and 97% were aged under 70 at the time of breast cancer

diagnosis (on average in 1985). Little consolidated information was available

about other adverse effects of HRT use.

In 1998 study results Hulley, Grady and other authors (1998) from a ran-

domized trial of Estrogen and Progestin hormone use for secondary preven-

tion of coronary heart disease in post-menopausal women were published.

This Hormonal Estrogen receptors study (HERS) followed a total of 2763

women with coronary disease for an average follow-up of 4.1 years, subse-

quently extended (HERS-II) after unblinding. While hormonal treatment

achieved significant reductions in cholesterol over placebo, no overall car-

diovascular benefit or significant differences in several other endpoints for

which power was limited was observed. The latter endpoints included breast

cancer, with 32 and 25 events, providing estimate of relative risk 1.30 with

confidence interval (CI, 0.77- 2.19).

Women’s Health Initiative (WHI) Investigators reported WHI Investiga-

tors (2002) on a recent randomized clinical trial of 16,608 post-menopausal

women aged 50-79 years with an intact uterus at baseline who were recruited

by 40 US clinical centres in 1993-1998. This group was part of a larger study

for which the primary outcome was coronary heart disease (CHD). Invasive

breast cancer was designated as a primary adverse outcome the reported sub-

study, which closed early with evidence of adverse effects including breast

cancer harm, some increase in CHD, stroke and PE outweighing benefits
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over the average 5.2 year follow-up period in the estrogen plus progestin

arm. The hazard ratio for invasive breast cancer was then 1.26 (95% nom-

inal CI 1.00-1.59, adjusted for multiple outcomes 0.83-1.92) between HRT

assignment (n=8506, 231 deaths, 3 with breast cancer cause) and placebo

(n=8102, 218 deaths, 2 with breast cancer cause). Adjustments for medi-

cation compliance were undertaken, censoring non-compliers 6 months after

non adherence, increasing the hazard ratio for breast cancer to 1.49.

Studies can be classified by elements of their design in order to exam-

ine specific effects associated with each class. We classified studies as either

randomized clinical trials, prospective studies, retrospective studies with hos-

pital controls or retrospective studies with community controls. This classi-

fication was consistent with the approach adopted in the systematic review.

4.1 Data analysis

Trial data on odds-ratios and standard errors was extracted from the

HFBC review appearing in the Lancet, the abovementioned two random-

ized trials and other later publications Persson, Thurfjell, Bergstrom and

Holmberg (1997), Jernstrom, Frenander, Ferno and Olsson (1999), Olsson,

Bladstrom, Ingvar and Moller (2001) identified in literature searches. The

systematic review was conducted prior to the reporting of two recently con-

ducted large randomized clinical trials. These and results of two further

studies (Swedish cohort and case-control studies) on the scientific question

were included in the analysis reported below.

The preferred outcome and exposure comparison in the odds-ratios re-

ported compares users or recent HRT users with non-users (in the 5 years

previous). Recall that the mean time of follow up following randomization
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in the Women’s Health initiative was just over 5 years and that during that

period of time 30% of the study participants failed to comply with their treat-

ment regime. Collection of recent usage statistics within each study involves

a complex time dependent analysis, for which source data was not available.

Instead, we chose for analysis the odds ratio comparison of ever-use with

never-use. Suitable data for this analysis was obtained at study level from

the meta analysis comparison of studies conducted by the HBFC (see their

Figure 3) and in subsequent study publications.

The odds ratio (or hazard ratio) in each study was supplemented by its

reported standard error. Standard errors were calculated for log odds-ratios

from confidence intervals or other statistics reported in source papers. In the

case of the WHI trial, it was considered appropriate to base calculations on

the standard error adjusted for multiple outcomes and sequential stopping

criteria, as reported in that study.

We report below results of random effects models conducted with routines

developed in S-Plus 6.1.

We applied the linear mixed effects model of Searle et al. (1992) accord-

ing to the EM algorithm of Chapter 8 with straightforward modifications

allowing for (i) known, but (ii) unequal, variances of observations.

4.2 HRT studies results

There were 28 reported studies (see Table 5) providing hazard or odds

ratios for ever- versus never- use of HRT.

[Table 1 about here.]

18



When meta analysis was applied to these 28 studies the average log ratio (log-

OR) was 0.186 with weighted standard deviation 0.165. Weighting was by

study sample size (appropriate in a population of homogeneous trials). Figure

1 displays the individual odds ratios and their 95% confidence intervals as

reported. The Figure suggests heterogeneity of study outcome is present, as

not all confidence intervals appear consistent with the pooled OR estimate,

1.20.

A linear mixed effect (LME) model provides for variation in odds ra-

tios through introduced random effects. Table 5 shows parameter estimates,

weighted residual sums of squares (−2 log-Likelihood) and corresponding de-

grees of freedom for three models: the null model just described, an LME

with common heterogeneity in non-randomized studies of all classes and an

LME with heterogeneity in both RCTs and non-randomized clinical trials.

[Table 2 about here.]

It appears from these results that while there is significant evidence of het-

erogeneity among non-randomized trials there is no evidence of lack of consis-

tency in findings of the two recent RCTs. In either model the pooled estimate

of the log-OR µ̂ is 0.188, again suggesting a 21% excess risk of invasive breast

cancer on average.

It is of interest to identify whether particular classes of non-randomized

studies exhibit specific effects that distinguish them from other classes.

[Figure 1 about here.]

When the trials are grouped according to class of study, as in Figure 1,

there appears to be a reasonable consistency overall with the log-OR es-
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timate 0.188, with a few exceptions. Firstly, in the group of prospective

studies, the result from pooling other (small) prospective studies differs sub-

stantially from the others. The pooled log-OR for ‘other prospective studies’

is -0.48 (RR 0.62). Population based case-control studies provide one study

discordant with the general finding, the Stanford study with log-OR estimate

-0.29 (RR 0.75), again suggesting reduced risk of invasive breast cancer. This

group also has a number of confidence intervals not including the common es-

timate. While there is no evidence of overall bias in this group of studies, the

results are consistent with a small random effect creating extra variation of

results in this class, leading to underestimation in confidence intervals of the

range of values for a common population mean. That is, standard errors may

be underestimated in this group of studies. Finally, among the few hospi-

tal based case-control studies, one study (the LaVecchia study) substantially

over -estimates the common log-OR.

It is possible to identify many of the trials providing discordant results

by the discrepancy observed in these trials between the variance of the log

odds-ratio for a pooled cross-classification (ignoring stratification) and the

variance reported after adjustment for stratification. This is a measure of

imbalance in the study design.

The general finding appears to be that all groups provide an overall aver-

age that is consistent between study types, but that non-randomized studies,

and case-control studies in particular, exhibit occasional studies with specific

effects consistent with a mixed effects model. The random effects may have

greater variances in these classes.

[Figure 2 about here.]
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According to the model developed, a 95% confidence interval for the log odds-

ratio comparing ever use with never use of HRT in post-menopausal women

is the range 0.16 to 0.22.

5. Conclusion

This paper contributes a random effects mixed model methodology for cal-

culating appropriate weightings of evidence contributed by different classes

of study in meta analysis. Droltcour et al. (1993) has argued for the ne-

cessity of cross-design synthesis for combining RCT and medical-practice

databases. Their recommended approach comprises: identifying complemen-

tary research designs and studies conducted; in depth assessment of each

study to identify the chief potential biases associated with its design; ‘sec-

ondary adjustments’ of study results to correct known biases; developing

synthesis frameworks and models to minimize the impact of hidden biases.

We have offered a general modeling methodology as the necessary synthesis

framework. Secondary adjustments may also be made by inclusion of the

covariate information necessary to such bias adjustment.

In the application to HRT data we observed significantly greater variabil-

ity in risk associated with use of Estrogen/Progestin in different studies than

is consistent with a single meta effect, despite the consistency in findings of

two recent randomized clinical trials. Applying the linear mixed effect model

which introduces additional variation in studies other than these two RCTs

led to two benefits: (i) providing a better fitting model for all study results

with corresponding pooled meta effect, and (ii) a reduction in the uncertainty

of the risk estimate from the findings of the RCTs alone. No single class of
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non-randomized study exhibited either consistent bias generally increasing

or reducing risk estimates based on that study class or higher random effects

variability than other classes.

This is not to say that data would not be consistent with other assump-

tions, such as a population of studies which are generally homogeneous, with

the exception of a few ‘outlier’ studies that should carry very little weight. A

slight variant on the variance component model we have applied, e.g. fitting

a non-normal distribution with extra weight in its ‘tails’, will provide ap-

propriate meta parameter estimates in this case. In our application to HRT

data, however, inspection of Figure 1 provides little sharp evidence against

the normality assumption.

It is also possible to simply generalise our models to adjust for other

fixed effects or allow for situations where extra variation is not apparent in

non-randomized populations.

It should be noted that the odds ratios from individual non-randomized

trials employed in our HRT modeling were those adjusted for a number of

important potential confounders in the Lancet meta-analysis. This is a very

good practice that would be expected to substantially reduce potential biases

within an observational class of studies. This adjustment was particularly

assisted by the comprehensive review of potential confounders in that paper,

meaning that all odds-ratios were adjusted for the same stratifying factors.

The general consistency of effects observed in development of invasive

breast cancer in randomized and non-randomized controlled clinical trials of

HRT is not always present. In studies of HRT with regard to purported ben-

eficial effects on coronary heart disease (CHD) outcomes, prevailing observa-
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tional evidence at the time the WHI and HERS clinical trials were designed

was for significant reduction in CHD with use of hormones. The eventual

findings of the same randomized clinical trials were of no significant benefit of

HRT. While there are no existing meta analyses of the evidence collected in

non-randomized studies, in this case it is likely that the evidence of the two

classes of study were in conflict, so another source of variation should exist.

This raises the interesting question of why analysis of the primary designated

positive outcome (CHD) is confounded but analysis of the primary adverse

outcome, invasive breast cancer, is not.
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Figure 1. Relative risk or odds ratio and 95% confidence intervals, n=28.
Studies ordered by date of publication.
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Figure 2. 95% confidence intervals for µ based on different study population
models.
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Table 1
HRT Trials with year of publication

Year Trial
2002 Women’s Health Initiative(WHI)
1998 Heart and Estrogen/progestin replacement Study (HERS)
1985 Canadian NBSS
1985 Schairer
1986 Nurses’ Health
1988 Netherlands Cohort
1991 Iowa Women’s Health

Other Prospective
1976 Brinton
1981 Cash
1981 Hislop
1983 Bain
1983 Ewertz
1984 Long Island
1988 Four State Study
1989 Yang/Gallagher
1989 Stanford

Other Case Control Pop Controls
1974 Morabia
1982 Vessey
1987 La Vecchia
1990 Katsouyanni
1992 Franeschi

Other Case Control Hosp Controls
1992 Nurses Cohort
1995 Nurses Cohort Extension
1999 Swedish Cohort
1999 Swedish Case-Control
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Table 2
Model estimates and log-Likelihood statistics; after 1000 EM iterations

Model Parameter estimate −2l df
Homogeneous model µ̂ = 0.186
no random effects σ2

1 = 0
σ2

2 = 0 37.73 27
Heterogeneity
in non-randomized studies only, µ̂ = 0.188
shared mean σ2

1 = 0
σ̂2

2 = 0.00684 27.407 26
Heterogeneity but shared mean µ̂ = 0.188
in both RCTs and NRCTs, σ̂2

1 = 0.00011
shared mean σ̂2

2 = 0.00672 27.405 25
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