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Can the Box Plot be Improved? 
Chamnein Choonpradub and Don McNeil* 

Invented by Spear in 1952 and popularized by Tukey in 1977, the box 
plot is widely used for displaying and comparing samples of continuous 
observations. Despite its popularity, it is less effective for showing 
shape behaviour of distributions, particularly bimodality. Using robust 
estimators of data skewness and kurtosis to classify the distribution into 
categories, we suggest a simple enhancement for indicating bimodality, 
central peakedness, and skewness. We also suggest a new graphical 
method for displaying confidence intervals when comparing several 
samples of continuous data. 
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Graphing confidence intervals; Multiple comparisons. 

1. Introduction 

The essential features of the box plot, called the range plot by Spear (1952) and 
popularized by Tukey (1977), are (a) a rectangular box extending from the lower 
quartile to the upper quartile of the data sample with a central dot or dividing line 
denoting the position of the median, and (b) additional lines called whiskers extending 
from each end of the box. In Spear’s original definition the whiskers extend all the 
way to the minimum and maximum values, while in Tukey’s modification each 
whisker extends no further than a fixed multiple of the interquartile range, with more 
extreme data (outliers) individually plotted.  

Various modifications have been suggested, some purely cosmetic, some designed to 
better reveal the distribution of the data, and others to include confidence interval 
information. Using his principle of maximizing the data-ink ratio, Tufte (1983: 124-
125) proposed that the box be entirely removed, but Benjamini (1988) rejected this 
idea on the grounds that it “gives the strange impression of seeing no data where the 
data are actually mostly concentrated”. A recommendation by Frigge, Hoaglin and 
Iglewicz (1989) that the whiskers have length 1.5 times the interquartile range is now 
commonly accepted (see, for example, Cleveland 1994).  

To some extent the box plot can show both skewness and bimodality in a distribution. 
Clearly, if the distribution is symmetric the symbol denoting the median is located at 
the centre of the box. Moreover, as Wainer (1990) pointed out, if the whiskers are 
sufficiently short relative to the interquartile range the distribution cannot be 
unimodal. But the reverse statements are not true. Like regression analyses that don’t 
show residuals (Anscombe, 1973), box plots can mask the shape of a distribution, 
giving a misleading impression. Figure 1 displays histograms of four rather different 
sets of data each of size 100 and having the same range, and their common box plot. 
Each histogram has 15 bins of width 1.2 starting at 1.0. 
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The first sample comprises the normal scores for a sample of this size, scaled to range 
from 1.0 to 19.0. Sample 2 is a mixture of two identical symmetric clusters of data 
each of size 49 and centered at 7.4 and 12.6, respectively, together with isolated 
values at the ends of the range. Sample 3 is a mixture of 70 values spaced evenly over 
the range, 15 values at 9.5, and 15 values at 10.5. Sample 4 comprises a value at 1.0, 
24 values at 7.4, 50 approximately evenly spaced values ranging from 7.4 to 12.6, and 
25 approximately evenly spaced values ranging from 12.6 to 19.0.  

 
Figure 1: Histograms and box plot: four samples each of size 100 

In an attempt to improve the box plot to show shape information, Benjamini (1988) 
suggested a “histplot”, obtained by varying the width of the box according to the 
density of the data at the median and quartiles, where these densities are estimated 
from a histogram with a small number of bins. Benjamini (1988) also suggested a 
variation called a “vase plot”, in which the linear segments in the histplot are replaced 
by smooth curves based on a kernel density estimate. Hintze and Nelson (1998) 
suggested a further modification called a “violin plot”, which is essentially the same 
as the vase plot, except that it extends to cover the whole range of the data. 

While these methods provide informative and useful displays, in essence they just 
replace the box plot by a kind of histogram, rather than modifying it. The problem 
remains to choose the extent of smoothing, which in turn should depend on the 
sample size.�The box plot has become popular largely because of its simplicity. This 
raises the question: Is there a simple modification of the box plot that provides better 
information about the shape of the distribution, especially bimodality? 

�
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2. Showing skewness and kurtosis in a box plot 
A possible approach is to thicken appropriate vertical lines in the box. Thus, if a 
distribution is right skewed, replace the edge of the box denoting the lower quartile by 
a thick line. If it is left skewed, thicken the edge corresponding to the upper quartile. 
If it is bimodal, thicken both edges. Similarly, if the distribution is peaked in the 
middle, thicken the line denoting the median. Figure 2 shows these possibilities for 
some typical samples. 

An allocation rule is needed. Choonpradub (2003) did a study of viewers’ choices 
when asked to classify sets of histograms into six classes as follows: (1) bell-shaped, 
(2) right-skewed, (3) left-skewed, (4) bimodal, (5) symmetric & long-tailed, or (6) 
other shape. The study involved 334 undergraduate and graduate students from 
Australia and Thailand separated into six groups, with the subjects in each group 
shown histograms of 16 samples with different shapes, so there were 96 samples in 
all. Each histogram was labeled with its sample size (50, 100 or 200).  

 
Figure 2. Box plot shapes: (from top) normal, right-skewed, left-skewed,  

bimodal, centrally peaked 

Since bimodality corresponds to a low value of the kurtosis (scaled fourth moment), it 
is reasonable to use the sample skewness and kurtosis coefficients to allocate the 
distribution to one of the five classes. But Choonpradub’s subjects placed undue 
attention on outliers, and she advocated the use of robust measures of skewness (�) 
and kurtosis (�), based on interquantile ranges of the sample distribution F as follows. 
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The robust skewness is thus defined in terms of the extent to which the median, 
F�1(0.5), is displaced from the interval F�1(1��)�F�1(�) spanning the area between the 
two �-tails, while the robust kurtosis is a linear function of the ratio of the widths of 
two similar intervals with tail areas � and �, respectively, where �  >��. Note that if � 
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is 0.25, � can be computed directly from the box plot because F�1(1��)�F�1(�) is then 
the interquartile range.  

When choosing the parameter � it is important to bear in mind that box plots already 
show outliers quite well, as well as skewness within the central half of the 
distribution. These considerations dictate that � should be sufficiently large to make � 
resistant against the outliers already shown, but substantially smaller than 0.25. A 
reasonable range might be 0.05 to 0.1. The parameter � should be at least 0.25 
because the robust kurtosis should focus on peakedness or emptiness in the middle of 
the distribution, and to achieve this, the inner interval should be enclosed between the 
quartiles. 

The constants c1, c2 and c3 could be selected to make the robust measures agree with 
the conventional coefficients of skewness and kurtosis when there are no outliers. The 
standard outlier-free distribution is clearly the normal distribution with kurtosis 0. 
Also the minimum kurtosis (�2) occurs for a symmetric binary distribution. Matching 
these requirements, Equation (2) gives 
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c3 = c2+2,         (4) 

where 	 is the standardized normal distribution function. 

A reasonable choice for the pivotal skewed distribution might be the half-normal 
distribution, for which the coefficient of skewness is  
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Thus, using Equation (1) where F is the standardized half-normal distribution, we get 
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For�� = 0.1 and�� = 0.35, equations (3)-(5) give c1 = 3.587, c2 = 0.860 and c3 = 2.860. 

Figure 3 shows a scatter plot of the robust skewness and kurtosis coefficients for the 
96 samples Choonpradub used. The plotting symbols are circles for samples seen as 
bell-shaped, triangles for samples perceived to be skewed, squares for samples seen as 
bimodal or short-tailed, and horizontal bars for samples seen as long-tailed. 

The graph also shows regions that could be used to allocate samples to distributional 
shapes based on the robust skewness and kurtosis. Based on the subjects’ allocations 
in Choonpradub’s (2003) study the following classification rule could be used. 

1: Normal if |�| �  0.4 and |�| �  0.2; 
2: Centrally peaked if � > max(0.2, |�|/2); 
3: Right-skewed if � > 0.4 and �0.2 �  � < 2�; 
4: Left-skewed if � < �0.4 and �0.2 �  � < 2|�; 
5: Short-tailed (possibly bimodal) if �� < �0.2. 

In Figure 3 the samples misclassified by the viewers according to this rule are plotted 
as filled symbols or, in the case of samples seen as long-tailed, by plus signs. In the 
next section we examine the more discrepant anomalies in detail. 
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Note that the skewed sample shown in Figure 1 has robust skewness 1.40 and robust 
skewness �0.19, which places it only slightly above the lower boundary of the region 
classified as right-skewed. This suggests that the horizontal boundary between the 
“skewed” and “short-tailed” regions should be replaced by a flat-topped hill. 

96 samples
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Figure 3: Robust skewness and kurtosis for 96 samples and allocation regions 

3. Anomalous samples 
Figure 4 shows histograms and modified box plots for the eight samples where there 
was greatest disagreement between the viewers’ perceptions and the rule. The samples 
are labeled as S1 to S96, and the viewers in Group 1 were shown sample S1-S16, 
those in Group 2 were shown S17-S32, etc. The sample sizes are shown next to the 
sample identifier. 

The four samples shown in the left panel (S49, S57, S61 and S38) have robust 
skewness and kurtosis coefficients (1.24, 0.10), (�0.34, �0.30), (�0.67, �0.45) and 
(�0.92, �0.10), respectively, and are thus classified as non-normal by the rule. Those 
graphed in the right panel (S20, S59, S60 and S72) have coefficients (0.030, �0.04), 
(�0.02, �0.07), (�0.03, �0.05) and (0.10, 0.10), respectively, and are thus classified as 
normal by the rule.  

S49 (size 50) was seen by 34 viewers as left-skewed, by 17 as long-tailed, and by the 
remaining 6 as bell-shaped. None said it was right-skewed. It has (Fisher) coefficients 
of skewness and kurtosis �0.17 and 3.90. It appears that many viewers chose to ignore 
the outlier on the right but not the two on the left when making their decisions. The 
same viewers had divided opinions about the shape of S57 (size 100): 27 said it was 
bell-shaped, 21 left-skewed and seven bimodal, and these results are understandable, 
given that the sample would be classified as normal under a more liberal rule. 
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S61 (size 200) gave a surprising result. In this case 28 of the 57 viewers (the same 
ones who looked at S49 and S57) said it was long-tailed, 19 said it was bimodal, and 
seven saw it as bell-shaped. 
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Figure 4: Samples where viewers saw differently to the allocation rule 

The results for S38 came from a different group of viewers, and were not remarkable. 
Of the 53 viewers, 30 saw bimodality and the others were evenly divided between 
bell-shaped, left-skewed, or other shape.  

The four samples graphed in the right panel of Figure 4 are all classified as normal by 
the rule. Experienced teachers of Statistics know that students attribute non-normal 
features to sampling variability, so none of these results is surprising 

4. Graphing confidence intervals 
Turning to modifications of the box plot to include confidence intervals, McGill, 
Tukey, and Larsen (1978) suggested using the width of the box to represent the 
sample size, and/or using notches to denote a confidence interval for the median. As 
an alternative to notches to represent the confidence interval, Benjamini (1988) 
preferred a shaded bar centered at the median. 

These alternatives provide additional information to the viewer in a single graphical 
component, but given that box plots show spread of data and confidence intervals get 
shorter when sample sizes increase, for comparing several populations it seems better 
to separate the confidence intervals from the box plots. For example, one could show 
box plots of one or more samples in the upper panel of a graph with confidence 
intervals for the corresponding population medians (or means, if preferred) in the 
lower panel. 
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While it is useful to show confidence intervals when comparing location parameters, a 
confidence interval for the disparity between these parameters is more informative. 
For two samples, student’s t-test gives a confidence interval for the difference 
between the population means, which can be graphed on a horizontal axis together 
with a vertical line passing through the origin. Thus, if the difference between the two 
sample means is statistically significant, the confidence interval does not intersect the 
vertical line, and vice versa. The graph could be placed below the conventional graph 
showing confidence intervals for the individual population means, using the same 
scale and with the point denoting the absolute value of the difference between the 
means aligned with the mean of the combined samples. 

This graph can be extended to more than two samples, using a measure of the 
disparity between the means of several populations, such as the root-mean squared 
difference. Figure 5 shows such a comparison using four samples of blood lead levels 
of schoolchildren attending schools at different locations on the Pattani River 
(polluted due to historical tin mining near two villages and a boat repair yard near the 
other two, see Geater et al 2000). The blood lead concentrations were measured in 
micrograms/deciliter and then log-transformed. Pairs of points denoting the means are 
joined if the corresponding Kramer-Tukey pairwise test based on the studentized 
range (see, for example, Cheung and Cheng 1996) is not statistically significant. 
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Figure 5: A graphical method showing confidence intervals for comparing means 

5. Conclusions and discussion 
Tukey’s box plot highlights outliers and shows skewness in the central half of the 
distribution. By masking data between the outliers, it does not give the viewer much 
opportunity to be unduly swayed by sampling fluctuations. We believe that previous 
attempts to improve the box plot by showing shape information have not become 
popular for at least three reasons as follows. 

First, including shape information makes the graph more complicated and more 
difficult to interpret, particularly if one is primarily interested in comparing several 
samples. Second, shape variations have relied on density estimation requiring an 
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additional smoothness parameter to be estimated. Third, and perhaps most important, 
showing too much shape information when graphing the distribution of a sample of 
data can mislead viewers into making erroneous conclusions. 

Given that the box plot does not adequately show bimodality and central peakedness, 
we have suggested a very minor enhancement that does not change the essential shape 
of the box plot, namely, to show bimodality by thickening the ends of the box 
denoting the quartiles, to show central peakedness by thickening the dividing line 
denoting the median, and to highlight skewness by thickening just one end of the box. 
The criteria for making such enhancements is based on robust estimators of skewness 
and kurtosis that extend the statistics used to create the box plot (the median and 
quartiles) to include two further quantiles, and the sample size is not an issue. 

While it could be argued that trying to improve the box plot is like gilding the lily, 
and that if more data need to be displayed histograms are adequate, there is evidence 
that both box plots and histograms can mislead viewers. Most statistically literate 
viewers, when shown a very short-whiskered symmetric box plot with no outliers, 
describe the underlying distribution as “symmetric” or “short-tailed” but overlook the 
fact that such a distribution must have two or more modes (Wainer, 1990). 
Choonpradub’s (2003) study based on over 300 university students studying Statistics 
provided evidence of their inability to make correct conclusions about distributional 
shape from histograms. 

Attempts to improve the box plot to include information about sample size (and thus, 
indirectly, confidence intervals of location parameters) have not been widely adopted, 
we believe, again because they detract from the box plot’s basic simplicity. We argue 
that such information is more effectively shown in a separate graph, or at least in a 
separate panel of the graph showing the box plot(s). When several populations are to 
be compared, we recommend graphing confidence intervals for the means, with pairs 
of points denoting the sample means joined by dotted lines whenever the 
corresponding pairwise multiple comparison tests are not statistically significant, and 
with a separate confidence interval for the root-mean-squared difference in the 
population means. 
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