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Abstract. Epidemiological studies use statistical methods to un-

derstand the factors that cause, reduce, and prevent diseases in

human populations. These studies estimate the parameters in a

target population based on representative samples, and can be

qualitative or quantitative, descriptive or comparative, and ob-

servational or experimental. Parameters of interest include lev-

els of disease and associations between risk factors and disease

outcomes. Concept maps are useful for showing causal paths be-

tween risk factors, disease outcomes, and intervening variables

(confounders) that could distort the association. The statistical

methods can be classified by the type and role of the data, and

are subject to both inaccuracy or lack of statistical power (due

to sampling variability) and bias (due to faulty measurement, dif-

ferential selection of subjects, or confounding). Matching of sub-

jects can improve accuracy. Mantel–Haenszel methods can reduce

confounding bias. Meta-analysis is used to combine results from

different studies. Statistical models include linear, logistic, and

Poisson regression, and the proportional hazards model for han-

dling censored data.

Keywords and Phrases. biostatistics, clinical trials, cohort analysis,

demography, epidemics, Framingham, longitudinal data analysis, logistic

regression, Mantel–Haenszel statistic, matched pairs, medical diagnosis,

medicine, Poisson regression, proportional hazards model, Cox’s;
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Introduction

Epidemiology is the branch of medicine concerned with understanding the factors

that cause, reduce, and prevent diseases by studying associations between disease

outcomes and their suspected determinants in human populations. It involves taking

measurements from groups of subjects and making inferences about relevant charac-

teristics of a wider population typifying the subjects. Since statistics is the science

that is primarily concerned with making inferences about population parameters using

sampled measurements, statistical methods [38] provide the tools for epidemiological

research. (See MEDICINE, STATISTICS IN).

An early example of epidemiological statistics in practice was a study by Louis [21],

who investigated the effect of the entrenched medical practice of bloodletting on

pneumonia patients in the 1830s, and found evidence that delaying this treatment

reduced mortality. Another epidemiological pioneer was Snow [36] who found that

the cholera death rate in London in 1854 was five times greater among residents

drinking water from a particular supplier, thus identifying contaminated water as a

risk factor for this disease.

While Louis [20] had already described many of the basic principles underlying

experimental research in epidemiology, it was not until the middle of the twentieth

century that a major clinical trial* was undertaken, when the British Medical Re-

search Council sponsored Hill’s investigation [12] of the effect of streptomycin treat-

ment for tuberculosis. In contrast, in the last half-century, as new and more virulent

diseases like AIDS have decimated populations, epidemiological research methods

have become widely used [3, 4, 8, 11, 14, 15, 19, 25, 32, 35, 37–39].
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Data roles

Each study attempts to answer a research question of interest, involving a target

population, using a specified set of research methods. In epidemiological studies, the

individual subject is typically the observational unit from which data are collected.

Each subject supplies a set of measurements comprising one or more variables. The

role of a variable is its definition as an outcome or a possible determinant of that

outcome. An outcome is a measure of the subject’s health status at a particular

period of time, whereas a determinant is a possible cause of the outcome through its

action at an earlier period of time.

Determinants include genetic factors affecting predisposition to disease, such as

haemophilia, which may increase the risk of infection through a contaminated blood

transfusion, and demographic factors, notably age, gender, occupation, and marital

status. They also include environmental and occupational exposures such as contam-

inated water, asbestos dust, and excess fat and cholesterol in the diet. Behavioral

determinants include tobacco and excess alcohol consumption, overexposure to the

sun, unsafe sexual practice, and drug addiction. Determinants include preventative

measures for health risk reduction, such as a vaccine for combating an infectious dis-

ease, screening for breast or prostate cancer, an exercise promotion campaign, or a

treatment aimed at curing or alleviating a disease or preventing further deterioration

in a person’s health. In this general definition, determinants include medications such

as aspirin, hypertensive and hormonal drugs, and treatments such as radiotherapy for

cancer and surgery for heart disease.

Concept maps

It is useful to have a concept map or causal diagram [9; 25, p. 41] to illustrate

graphically the roles of variables in a study. Figure 1 shows two examples.

The distinction between a determinant and an outcome is not always clear-cut.

Inadequate prenatal care (measured by the number of visits to a clinic) during the

first trimester of pregnancy (T1) is usually associated with an increase in the risk

of perinatal mortality. However, reduced prenatal care during the third trimester of

pregnancy (T3) is usually associated with reduced perinatal mortality. The reason
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High blood
pressure
determinant

Heart
attack
outcome

Positive association

Screening
Breast
cancer
outcome

Negative association

Figure 1 Concept map examples

for this apparent anomaly is that any pregnancy complication is likely to give rise to

additional prenatal care, so that prenatal care in the first trimester is a determinant,

but prenatal care during the third trimester is an outcome. The term intervening

variable is used to describe a variable on the causal path between a determinant and

an outcome. Figure 2 shows a concept map for this example. In this graph, the bold

arrows show the true causal relations, while the other arrows show the associations

that would be observed in the absence of consideration of the intervening variable.

Prenatal
care in T1
determinant

Prenatal
morbidity
intervening
variable

Prenatal
care in T3

Positive
association

Perinatal
mortality
outcome

Negative association

Figure 2 Concept map with an intervening variable

Typically, a study will have just one outcome variable of interest. If there is more

than one outcome variable, these outcomes may be considered separately, and usually

the analysis will focus on the one of primary interest. However, often there will be

several determinants of interest, even though the research question will focus on the

association between a particular determinant and the outcome under consideration.

Consider a study in which the research question is the extent to which calcium

deficiency is a risk factor for hip fractures in an elderly population. Osteoporosis is
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known to increase the likelihood of a hip fracture in this population, and calcium

deficiency is also known to cause osteoporosis, as shown in Fig 3.

Calcium
deficiency
determinant

Hip
fracture
outcome

Osteoporosis
confounder

Association ?

Positive
association

Positive
association

Figure 3 Concept map with a determinant and a confounder

A confounding variable (or confounder) is a determinant that affects the associ-

ation between a determinant and an outcome. In this case, the association between

the determinant (calcium deficiency) and the outcome (hip fracture) is of primary

interest, but the intervening variable (osteoporosis) could interfere with the measure-

ment of this association in a study. Dealing with confounding* is an important part

of epidemiological statistics.

Data types

Variables can also be classified according to their data type. Data types are typically

nominal* (having two or more distinct categories with no natural order), ordinal*

(having three or more ordered categories), or interval (measured on a scaled range,

also called continuous). Epidemiological outcomes are commonly of binary type,

corresponding to the presence or absence of a disease. Binary outcomes are convenient

from the medical diagnostic point of view: if a subject is diagnosed as having the

disease in question, a specific treatment might be justified, but not otherwise.

Nominal variables with three or more categories often arise in epidemiological

studies. Examples of such determinants include a subject’s occupation, their country

of birth, and marital status. Nominal outcomes include disease diagnosis (type of

cancer, such as breast, ovarian, lung, colon, or stomach) and type of lung cancer cell

involved (such as small, large, squamous or adeno).
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Ordinal variables are useful when classification into just two categories is rela-

tively uninformative. For infants with diarrhea, three categories of disease status

(mild, moderate, and severe) are often used, giving four categories in all when disease

absence is included. Similarly, a patient’s outcome in a cancer trial could be classi-

fied as complete response, partial response, no change, or progressive disease. Ordinal

determinants commonly measured in epidemiological studies include age group, du-

ration of exposure to an occupational risk factor, and the status of some behavioral

variable of interest such as exercise, snoring, smoking, or drug-taking.

Interval outcomes include CD4 count (typically ranging from 600 to 1200 in normal

persons, a useful measure of health status for subjects with HIV), and the blood lead

concentration for a child exposed to contaminated water or motor vehicle exhaust

in a city. The duration of survival and a quality of life index are interval outcomes

of major interest in cancer studies. Body mass index is a useful interval outcome

in obesity studies. Many determinants are measured in this way: the duration of

exposure to an environmental hazard, the dose level of a therapeutic drug, a disabled

person’s performance status, and the percentage of fat in a diet.

Disease measurement

A basic objective in epidemiological research is measuring the level of some disease in a

population. If the outcome is simply disease presence or absence, then the prevalence

is of interest: this is simply the proportion of individuals affected with the disease.

For interval outcomes, a statistical summary such as the mean or the median could

be used to represent the status of the population. Typical examples include (i) the

mean birth weight of newborn babies at hospitals in an urban population, and (ii)

the median survival time for patients in an organ transplant program.

A problem with measuring prevalence in a population is that it is likely to reflect

what has happened in the past rather than the current situation. In HIV research,

the extent to which new cases are occurring is of primary interest, for this measures

the effectiveness of preventative programs. Thus the incidence of a disease, defined

as the proportion of new cases that occur per unit time among persons free of the

disease in the population, is another important epidemiological statistic.
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Measuring associations

Associations between possible determinants and disease outcomes are usually of greater

interest than disease levels. For example, knowing whether taking oral contraceptives

affects a woman’s risk of developing breast cancer is important, and many studies

have addressed this question. Where an association has been established, it is often

of interest to quantify it more accurately. For example, what is the relative risk*

that a heavy smoker will develop lung cancer (compared to a nonsmoker)? If both

the outcome of interest and the determinant are measured on an interval scale, their

strength of association can be expressed as a correlation* coefficient. If the outcome is

measured on an interval scale and the determinant is categorical, the association can

be expressed as a function of the differences in the means of the outcomes associated

with the levels of the determinant.

When both variables are categorical, it is more convenient to express the associ-

ation as a matrix of conditional probabilities, where a typical element in this matrix

is the probability of a specified outcome, given a specified level for the determinant.

Equivalently, the conditional probabilities can be expressed as probability ratios (or

relative risks). In the simplest situation, in which both the determinant and outcome

are binary, this association is expressed as an odds ratio* or as a risk difference, as

follows.

Denoting the probabilities (or risks) of the (“adverse”) outcome for two individuals

in two different levels of the determinant by p1 and p2, respectively, the relative

risk is just the ratio p1/p2. The odds associated with a probability p is defined as

o = p/ (1 − p), so the odds ratio ω, say, comparing the two individuals is

ω =
p1/ (1 − p1)

p2/ (1 − p2)
(1)

(See ODDS-RATIO ESTIMATORS; RELATIVE RISK.) The risk difference, de-

fined as p1 − p2, is also widely used, particularly in the public health literature, to

measure the risk attributable to the exposure. Similarly, the attributable risk propor-

tion is defined as 1 − p2/p1 [32, pp. 203–211].

Where an association is suspected but has not yet been established, the research

question is framed in terms of a null hypothesis, which states that there is no as-

sociation between a specified determinant and a particular disease outcome in the
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population of interest. On the question of a possible association between oral contra-

ceptive use and breast cancer outcome, the null hypothesis would state that there is

no association between these two variables in the target population.

The methods for testing a null hypothesis are essentially statistical (See HY-

POTHESIS TESTING; P-VALUES). It is important to realize that a study might

not provide a conclusive answer to the question, due to the limited size of the sample.

Consequently the result of a study is not certain, but probable.

Types of studies

Most epidemiological studies require data collection*, but this is not essential. A

study could be purely deductive, based on logic, starting with known facts or as-

sumptions and arriving at a conclusion. Knowledge of appropriate theory can also

reduce the need for data collection.

If a study involves data collection, it is said to be inductive, because the data in

the sample are used to induce the characteristics of the target population. Inductive

studies based on data collection are also called empirical studies, and are classified as

either quantitative or qualitative.

A quantitative study involves structured data collection. In this case, the same

characteristics are measured on all subjects in the study, using a protocol or set of

guidelines that are specified in advance. The method of data collection in a quan-

titative study is often a questionnaire, or an instrument that automatically records

the measurements from the sampled subjects. In contrast, a qualitative study is rel-

atively unstructured. It may involve open-ended questioning of subjects, and may be

opportunistic in the sense that the answer given to one question determines the next

question. A qualitative study may precede a more formal quantitative study, with

the aim of getting sufficient information to know what measurements to record in a

quantitative study. For example, an investigator wishing to compare a new program

for improving the reproductive health of mothers in an aboriginal community in out-

back Australia would spend some time in the community getting to know the people

before embarking on the fully fledged study.
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A quantitative study could be purely descriptive, or comparative. Descriptive

studies simply aim to measure levels or prevalences, whereas comparative studies

measure or test the existence of associations between determinants and outcomes.

Studies are also classified as experimental or observational. An experimental study

is one in which the investigator has some control over a determinant. To investigate

a possible association between beer consumption and stomach tumor incidence, for

example, the investigator could take a sample of laboratory mice and divide them

into two groups, force one group to drink beer and deprive the other, and observe

each group to compare the incidences of tumors over a period of time.

Observational studies* do not involve any control by the investigator over the

determinant, and are thus in a sense less rigorous than experimental studies. How-

ever, the latter studies require interventions that might be costly, and are not always

feasible or ethical, particularly if human subjects are involved.

Clinical trials

Experimental studies in epidemiology investigate treatments, such as therapies for

cancer or heart disease patients, or interventions, such as screening and health pro-

motion studies. These studies are classified by various factors including the type of

subjects and the size and extent of the study. The study is called a clinical trial if

the subjects are hospital or doctors’ patients, whereas the study is a field trial if it

involves subjects in the community at large. Clinical trials usually involve patients

who have some disease or condition, with the objective of investigating and compar-

ing treatments for this condition. In field trials, the subjects usually are disease-free

at the time of selection, and the trials aim to compare strategies for prevention.

Clinical trials are classified according to phases of development of new treatments.

A Phase I trial evaluates the safety of a proposed new treatment, whereas a Phase

II trial attempts to discover whether a treatment has any benefit for a specific out-

come. A Phase III trial is used to compare a promising new treatment with a control

treatment, which could be no treatment at all. Since patients often react positively

to the idea of a treatment (even if it is otherwise ineffective), a placebo, that is, a

treatment that looks like a real treatment but contains no active ingredient, is often

used instead of no treatment. Phase IV trials are similar to field trials in that they
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involve monitoring of treatments in the community; conceptually they differ from

field trials only in the sense that they are concerned with subjects with some health

problem whereas field trials usually focus on prevention.

Experimental studies often involve randomized allocation of subjects to treat-

ment and control groups, an idea proposed by R.A. Fisher* in 1923 for comparing

treatments at the Rothamsted agricultural research station in Britain. The aim of

randomization is to form treatment and control groups that are initially as similar as

possible, so that any substantial difference in outcomes observed in these groups can-

not be ascribed to factors other than the treatment effects. Randomization ensures

that the comparison groups are balanced, not just with respect to known determinants

of the outcome, but with respect to all possible risk factors.

An early large field trial was the 1954 study of the Salk vaccine for preventing

poliomyelitis [24]. In this study, 400,000 schoolchildren were randomly allocated to

receive the vaccine or a placebo, with the result that only 57 cases of polio occurred

in the vaccinated group compared with 142 in the control group.

Cohort studies

A cohort study is similar to a clinical trial, in the sense that the subjects are again

selected (though self-selected) according to their determinant status, but it is obser-

vational rather than experimental. Cohort studies often involve monitoring subjects

over an extended period of time, and consequently they are useful for investigating

multiple determinants of outcomes. In a classical example (See FRAMINGHAM: AN

EVOLVING LOGITUDINAL STUDY), from 1948 onwards residents of Framingham

in Massachusetts were continuously monitored with respect to many risk factors and

disease outcomes.

If the data collection is prospective*, as is often the case in cohort studies, a

cohort study can be an expensive and time-consuming exercise. Breslow and Day [4]

provided a detailed account of the use of cohort studies in cancer research.
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Case-control studies

A case-control study (see RETROSPECTIVE STUDIES) is similar to a cohort study,

but the subjects are selected according to their outcome status rather than the de-

terminant [3, 30, 34].

Both cohort studies and case-control studies involve differential selection of sub-

jects according to their exposure or disease status. In a cohort study, a group of

disease-free subjects exposed to the determinant of interest is first selected, together

with a comparable group of subjects not exposed to the determinant, and the subse-

quent outcome status of the two groups is then compared. In a case-control study,

the variables are reversed: first, a group of subjects with the outcome and a com-

parable outcome-free group are selected, and then the levels of prior exposure in the

two groups are compared.

Since the exposure must logically precede the outcome, a cohort study cannot look

for outcomes that occur before the exposure, and a case-control study cannot look

for exposures that occur after the outcome. Thus, cohort studies are often said to be

prospective (see PROSPECTIVE STUDIES) and case-control studies retrospective.

When the disease is rare, a cohort study is inefficient, because a large number

of subjects will be needed to obtain sufficiently many adverse outcomes to obtain a

conclusive result. In this situation, a case-control study is more efficient because one

of the two groups being compared contains only the subjects with the disease, and

the control group can be restricted to a comparable number of subjects. By the same

token, a case-control design is inefficient when the exposure to a risk factor is rare

and the adverse outcome is relatively common.

Cross-sectional studies

In a cross-sectional study, there is no differential selection of subjects, either by the

determinant or the outcome: one simply selects subjects from the target population,

without taking into account the outcome or the determinant. Snow’s investigation of

risk factors for cholera [36] was a cross-sectional study: here the sample comprised all

the residents of a particular area of London where a cholera epidemic had occurred
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during July and August 1854, and the subjects were classified according to death

from cholera (the outcome) and their source of drinking water.

Figure 4 gives a graphical representation summarizing the various types of epi-

demiological studies.

Inductive Deductive

QuantitativeQualitative

Descriptive

Case-control
study

Cohort
study

Clinical
trial

Field
trial

Cross-
sectional

study

Comparative

Observational Experimental

Figure 4 Classification of research studies

To summarize, inductive studies involve data collection, in contrast to purely

deductive studies. Inductive studies can be qualitative or quantitative, depending on

the extent to which similar data are collected from each subjects. Quantitative studies

can be descriptive or comparative, and comparative studies can be observational or

experimental. Observational studies can be of cohort, case-control, or cross-sectional

type, and these are distinguished only by the method of selection of subjects. Since

experimental studies involve allocation of subjects to treatment or exposure groups

(ideally by randomization), which must occur prior to the occurrence of the outcome,

they could be regarded as controlled cohort studies.

Bias

Two error factors reduce the credibility of a study: (i) systematic error, or bias, and

(ii) chance error, or sampling variability.

Bias is a systematic distortion in a measured effect due to a deficiency in the

study design. It may arise in three ways: (i) from poor measurement (information
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bias), (ii) because the sample is unrepresentative of the target population (selection

bias*), or (iii) from the differential effects of other determinants on the association

(confounding).

There are many sources of measurement bias, such as faulty measuring instru-

ments, different standards in different biochemical laboratories, errors made by clin-

icians in diagnosing diseases, bias by investigators consciously or unconsciously re-

porting more favorable results for treatments they believe in, biased reporting of

symptoms by patients wishing to please their doctors, memory lapses by subjects in

case-control studies when asked to recall past exposure to a risk factor (recall bias),

lack of compliance by patients in clinical trials, and poor data quality management.

Some measurement biases can be reduced or eliminated by good study design.

For example, blinding of investigators and subjects, so that they don’t know which

treatment a subject received until after the response has been evaluated, can reduce

biased reporting in clinical trials. When the evaluators know the treatment allocation

but the subjects do not, the study is said to be single blind. If neither patients nor

evaluators know the treatment allocation, the trial is said to be double blind.

Selection bias has two levels. The first occurs when the sample does not represent

the target population but still constitutes a representative sample from some restricted

population that is a subset of the target population. In this case, the results obtained

from the study might not be generalizable to the target population but are valid for

a subpopulation. Such studies are said to have internal validity but lack external

validity. Because their subjects usually constitute a select group that must satisfy

tight eligibility criteria, randomized clinical trials only have internal validity.

The second, more serious, level is differential selection bias, which arises when

the selection criteria for inclusion in a study vary with respect to a factor related to

the outcome. Whenever a cross-sectional study has a low response rate, there is an

opportunity for differential selection bias (response bias) because the nonresponders

could provide different outcomes to the responders. Such bias often arises in studies

in which questionnaires are mailed to sampled subjects.

Sackett [33] classified biases that can arise in case-control studies, which are par-

ticularly prone to differential selection bias, because it is difficult to get a control

group that is representative of the noncases in the target population.
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The third kind of bias in a study is called confounding bias, and it arises where

the association between a determinant and an outcome is distorted by another de-

terminant. Confounding arises whenever an outcome has two or more determinants

that are themselves associated and one is omitted from consideration.

Confounding can make two unrelated variables appear to be related, and can also

appear to remove or reverse a valid association.

Sampling Variability

Sampling variability arises because samples are finite, so even if there is no bias in a

study, its conclusion is only probably true. Two statistical measures are associated

with the sampling variability—a confidence interval* and a P -value*.

A 95% confidence interval is an interval surrounding an estimate of a population

characteristic (such as a mean or a prevalence, or a relative risk or an odds ratio),

which contains the population characteristic with probability 0.95. It is thus a mea-

sure of the precision with which a population parameter can be determined from a

study: the narrower the confidence interval, the greater the precision. The chance

that the population parameter will not be located within the given confidence interval

is 0.05 (see CONFIDENCE INTERVALS AND REGIONS).

While 0.05 is the conventional statistical false positive error rate, wider confidence

intervals, containing, say, 99% probability, are preferable when several parameters

need to be estimated from the same study. Increasing this probability level can

ensure that the overall risk of making an incorrect conclusion remains close to 0.05.

A 95% confidence interval for a population parameter may be given approximately

and simply as the interval (T − 1.96 × SE, T + 1.96 × SE), where T is the estimate

obtained from the study and SE is its standard error, defined as the (estimated)

standard deviation of T . This is based on the assumption that the sampling distribu-

tion of the estimate T is approximately normal, which can be justified by statistical

theory to be so if the sample size is large enough (see ASYMPTOTIC NORMALITY

and LARGE-SAMPLE THEORY). In the case of the distribution of an odds ratio,

the approximation to normality is substantially improved by replacing the odds ratio

by its logarithm.
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A substantial part of epidemiological statistics is thus concerned with obtaining

reliable formulas for the standard errors of the estimates of population parameters

that arise in particular situations. If there is no bias, the standard error of an esti-

mate generally decreases in proportion to the inverse square root of the sample size.

Symbolically, this result may be expressed as

SE =
c√
n

(2)

where c is a constant and n is the sample size. In particular, this means that you need

to quadruple the sample size in order to reduce the width of the confidence interval

by a factor of 2, and thus double the precision of the estimate. This result assumes

that the observations are independent. In epidemiological studies, data are often

clustered, either due to geographical proximity or because repeated measurements

are taken on identical or similar subjects. Methods for detecting and adjusting for

correlated outcomes have been developed [11, 29, 39].

A P -value is more complex than a confidence interval, in the sense that it involves

a null hypothesis*, that is, a statement or claim that a target population parameter

equals a specified null value.

When there is just one variable of interest, the parameter could be a mean or

a prevalence. For a comparative study in which a possible association between two

variables of interest may be present, the null hypothesis usually states that there is

no association between the variables in the target population.

A P-value has the same conceptual basis as a confidence interval, namely, the

idea of repeating the study many times under the same conditions, each time using

an independent sample based on the same number of subjects. It is the probability,

assuming that the null hypothesis is true, that another such study will give an estimate

at least as distant from the null value as the one actually observed. The P -value is

usually calculated as the area in the tails of a normal distribution or as the area in

the right tail of a chi-squared distribution.

Although a small P -value provides evidence against a null hypothesis, a relatively

large P -value needs to be supported by a large sample before it provides evidence in

favor of a null hypothesis.
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Matching

Both selection bias and confounding, as well as sampling variation, can be reduced

by matching, a design technique that involves subdividing the treatment or exposure

groups into smaller subgroups, or strata, so that the members of a stratum are homo-

geneous with respect to specified determinants, such as age or occupational status,

which are not themselves of interest in the study. An important special case is the

matched pairs* design, in which each stratum comprises just two subjects. In some

situations it is feasible for each stratum to consist of just one individual, and the

corresponding studies are called crossover studies (see CROSSOVER TRIALS), in

which the subjects act as their own controls. In a crossover study, the subjects are

first divided into two or more treatment groups as in a Phase III or IV trial, and after

a specified period of time, each subject is given an alternative treatment [1, 5, 35].

While matching is often used in epidemiological studies to improve precision or

reduce bias, it can be unnecessary and even counterproductive. If a covariate is not an

independent risk factor for an outcome of interest, matching on it is simply a waste of

effort. If a covariate is not an independent risk factor for the outcome but is associated

with the exposure factor, matching on it is both wasteful and inefficient, since this will

create uninformative matched sets whose members have the same exposure. When

a covariate is associated with both the risk factor and the outcome, matching on

it can introduce bias. The term overmatching is used to describe such situations.

Consequently, matching is most effective when the covariate on which the matching

is done is a risk factor not associated with the determinant of interest.

In epidemiological studies, it is very common to match with respect to age. The

advantage of this strategy is that age is often a strong risk factor, but one that is

not of primary interest in its own right. Effective matching will then improve the

efficiency of the study by reducing the variation in the outcome due to the matched

covariate, and can also reduce bias that might arise from the confounding effect of

the covariate.
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Statistical Significance versus Effect Importance

In statistical methodology, the term significance is defined by the P -value: the smaller

the P -value, the more significant the result. But a statistically significant result does

not necessarily equate to a worthwhile effect. A study could easily fail to detect a

worthwhile effect. Alternatively, a result could be statistically significant, but of no

practical importance.

Confidence intervals can illustrate and elucidate these apparent anomalies. Fig-

ure 5 shows 95% confidence intervals for five different studies involving the estimation

of a population parameter. The population parameter has null value 0, and a value of

δ or more is considered worthwhile or important. For example, the parameter might

be the effect of a new but expensive drug in reducing the risk that an HIV-infected

person will die from AIDS within five years. In this case, it might be reasonable to

choose δ to be 0.1, on the grounds that any lesser benefit would not outweigh the

high cost of the new drug.

0 d (Worthwhile effect)

Study

A

B

C

D

E

Figure 5 Examples contrasting statistical significance and effect importance

In Study A, the 95% confidence interval includes the null value, so the result is

not statistically significant. However, the effect could be important, because the con-

fidence interval also includes the value δ. In this case, the study is quite inconclusive.

A larger study would need to be undertaken.

In Study B, the result is statistically significant because the 95% confidence in-

terval does not contain the null value, but the effect might not be important. So the
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study is still not completely conclusive, and a larger sample is needed to establish the

importance of the effect.

In Study C, the result is statistically significant and the effect is important. So in

this case a conclusive result has been obtained.

In Study D, the result is not statistically significant and the effect is not important.

Despite the absence of statistical significance, the study is conclusive.

Study E illustrates the final possibility, in which the result is statistically signifi-

cant but the effect is not important.

Ideally, a study should be large enough to detect a worthwhile effect, but not so large

that it can detect an unimportant effect.

Basic Statistical Methods

For comparative studies, the statistical method is determined by the data types of the

determinant X and the outcome Y. If both Y and X are binary, the data comprise a

two-by-two contingency table of counts (see TWO-BY-TWO TABLES), giving two

proportions to be compared, and a single odds ratio measures the strength of the

association. If the variables have more than two categories, the data can be summa-

rized using multiple proportions and odds ratios*. Logistic regression* is appropriate

when the outcome is categorical and the determinant is of interval type. For interval

outcome data, means rather than proportions are used to summarize the data, and

differences of means rather than odds ratios measure the associations of interest. Cor-

relation and regression* methods (see LINEAR REGRESSION) are most convenient

for handling data in which both the outcome and the determinant are continuous.

As described below, the methods become more complex when a third variable

exists.

Sample Size Determination

An important problem faced by the epidemiological statistician is that of determining

the appropriate sample size in a study (see SAMPLE SIZE DETERMINATION).

This choice depends on the precision needed in estimating the parameter of primary

interest in the study. It is also desirable to compute the statistical power, which is
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the probability of making a correct decision when rejecting the null hypothesis of

interest.

Assuming that the sample size is sufficiently large for asymptotic normality prop-

erties to apply, the precision [22] with which a population parameter can be estimated

is defined as the half-width of the confidence interval, that is,

d = zα/2, SE, (3)

where zα/2 is the critical value for the standardized normal distribution corresponding

to a two-tailed area α. To determine the sample size required to achieve a specified

precision, a formula for the relevant standard error is thus needed.

The Power of a Study

When a major objective of a study is to test a new treatment, rejecting the null

hypothesis could lead to a change in health policy. This can happen when a clinical

trial comparing a promising new therapy with the standard treatment finds in favor

of the new therapy. While there is always a chance of rejecting the null hypothesis

when it is true, and this risk (α, the Type I error) is conventionally taken to be 5%,

the probability of failing to detect a worthwhile benefit (β, the Type II error) must

also be taken into account.

The power* is (1 − β) of a study •is as the probability that a worthwhile benefit•Q1

will be detected. This probability depends on various factors, including the size of

the worthwhile benefit, the variability in the data, and the sample size. The power

of a study can be expressed in terms of these parameters:

Suppose that a worthwhile benefit δ exists and that the estimate d of this benefit

based on the data is approximately normally distributed with mean δ and standard

deviation SE, so that Z = (d − δ) /SE has a standardized normal distribution. The

null hypothesis that δ is 0 is rejected whenever d exceeds zα/2SE in magnitude.

When δ = 0, the null hypothesis is true, and this probability is α, the Type I error.

But if δ is substantially greater than 0 (greater than SE, say), the null hypothesis

is rejected when |Z + δ/SE| exceeds zα/2, which happens when Z > zα/2 − δ/SE

or Z < −zα/2 − δ/SE. Since δ > SE, the probability of the second alternative

is negligible for reasonable values of α, so the approximate probability of rejecting
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the null hypothesis is the tail area corresponding to the critical value zα/2 − δ/SE,

that is, 1 − Φ
(
zα/2 − δ/SE

)
, where Φ (z) is the cumulative standardized normal

distribution function. This probability is also the power of the study, 1 − β, which

equals Φ (zβ) = 1 − Φ (−zβ), so that

δ =
(
zα/2 + zβ

)
SE. (4)

This formula assumes that the variability of the estimated benefit d does not

depend on δ, and becomes more complicated when this assumption is relaxed. It

is quite similar to the precision formula (3), and thus could be used to determine

the sample size needed to achieve a specified power. Equation 4 can be inverted to

determine the power of a study, given the sample size:

1 − β = Φ
(
δ/SE − zα/2

)
. (5)

Adjusting for a Stratification Variable

A large body of statistical methods used in epidemiology deals with categorical data*

involving three factors. The first two factors comprise a determinant X and an

outcome Y , and the third is a stratification variable Z. If X,Y , and Z have levels

r, c, and s respectively, the data may be represented as an r×c×s contingency table.

The associations of X and Y with Z may distort the association between X and Y .

When X and Y are both binary, a method due to Cochran [7] is used to test for an

association between X and Y after adjusting for Z. This method uses a chi-squared

test with one degree of freedom, and assumes that the association is the same for

each level of Z. Birch [2] extended the test to general r × c × s tables.

When r and s are both equal to 2, the association can be expressed in terms of

a single odds ratio. Assuming that this odds ratio is the same in each stratum of Z,

Mantel & Haenszel [23] gave a robust estimator of the odds ratio (see MANTEL–

HAENSZEL STATISTIC), and Robins et al [31] derived the variance of its logarithm.

The common odds-ratio assumption can be tested using a chi-squared test with

s−1 degrees of freedom [3, p. 142]. This test requires that the counts in the individual

strata be reasonably large.

Clayton [6] showed that where both X and Y are ordinal, the association could be

summarized in terms of a single odds ratio, defined in terms of the aggregated counts

20



ess6019 Don McNeil

for cells with values up to and including each specified value; it is assumed that all

these odds ratios are identical in the target population. A chi-squared test comparing

the observed counts with expected counts could test this homogeneity assumption.

Meta-Analysis

If a study is too small, it is unlikely to give a conclusive result. When planning

clinical trials, it is conventional to require a power substantially greater than 0.5.

But if the research question is important, any properly conducted study gives useful

information. The evidence accrued from many small studies can be combined using

a method called meta-analysis, which first arose in the social science literature [13]

and is now widely used in medical research [26, 27, 37].

Ideally, each contributing study investigates the same treatment or risk factor

and the same outcome for similar subjects, and each study will have the same type

and quality of design. But selecting the studies to include is difficult because studies,

even when they have the same research objective, tend to vary substantially in quality

from place to place and at different times. Biases can arise if not all relevant studies

are included. In practice, inconclusive or uninteresting studies often remain unpub-

lished, giving rise to publication bias [10]. Undertaking a meta-analysis requires a

professional team of scientists.

In general, it is always possible to do a meta-analysis whenever the estimate of

the effect and its standard error is available for each contributing study. If yk is the

estimated effect and SEk its standard error based on the kth study, the combined

estimate and its standard error are given by

ŷ =

∑
wkyk∑
wk

, SE (ŷ) =
1√∑
wk

, (6)

where wk = (1/SEk)
2 .

Survival Analysis

Survival analysis* (see also LONGITUDINAL DATA ANALYSIS) is a major area

of epidemiological statistics concerned with measuring the risk of occurrence of an

outcome event as a function of time. It thus focuses on the duration of time elapsed
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from when a subject enters a study until the event occurs, and uses the survival curve

to describe its distribution. Survival analysis is also concerned with the comparison of

survival curves for different combinations of risk factors, and uses statistical methods

to facilitate this comparison [14, 16, 18].

In general, survival analysis allows for the proper treatment of incomplete data

due to subjects dropping into or out of the study, giving rise to censored (more

precisely, right-censored) data. Survival data may be censored because (i) the subject

withdraws from the study for any reason before experiencing the event (’‘loss to

follow-up”), or (ii) an intervening event occurs prohibiting further observation on the

subject, or (iii) the subject does not experience the event before the study ends (or

before an analysis of the results is required).

When the event of interest occurs, the survival time is conventionally called a

failure time (even though the event might be a “success”, like recovery from some

disease).

The survival curve is the proportion of subjects surviving beyond a given duration

of time t. For a large population in which the survival times range continuously over

an interval, this curve will be a smooth function of t that decreases from a maximum

value of 1 when t is 0. In practice, the survival curve estimated from a sample of data

is a step function that decreases only at the failure times [17].

A useful summary of survival that can be estimated directly from a survival curve

is the median survival time. This is the survival time exceeded by 50% of the subjects,

and is obtained by finding where the survival curve has the value 0.5.

Survival curves compare risks for different groups of subjects by showing the

survival curves for the different groups on the same axes. Thus if one curve (for

Group A, say) is entirely above another (Group B), then the subjects in Group A

have better survival prospects than those in Group B. However, if the two curves

cross, the situation is more complicated: it means that the relative risk of failure

depends on how long a subject survives.

The logrank test [28] provides a P -value for testing the null hypothesis that two

or more survival functions are identical. This is a special case of Birch’s extension of

the Mantel–Haenszel–Cochran test, which requires that the population odds ratios in
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the different strata are the same. In survival analysis, this homogeneity assumption

is called the proportional hazards assumption.

The proportional hazards model*, described in the next section, provides another

method for analyzing survival data. It has the advantage that it can handle both

continuous and nominal determinants simultaneously. However, in common with

other statistical models, it makes additional assumptions about the associations and

should be regarded as an accompaniment rather than an alternative to the methods

described in this section.

Logistic Regression

Logistic regression* provides a method for modeling the association between a nom-

inal outcome and multiple determinants. It is similar in many ways to linear regres-

sion*. For m determinants, it takes the form

ln

(
p

1 − p

)
= α +

m∑
j=1

βjxj. (7)

The only other statistical assumption is that the outcomes are mutually indepen-

dent. The model is known as simple logistic regression [19].

Logistic regression provides a further statistic, the deviance*, which can assess

the statistical significance of a set of determinants in the model. The deviance is

defined as −2 lnL, where L is the likelihood associated with the data for the fitted

parameters. Two logistic regression models are fitted to the data, one containing all

the determinants of interest, and the other containing all the determinants except for

those being assessed. Asymptotically, the difference between the values of the two

deviances has a chi-squared distribution, with the number of degrees of freedom equal

to the number of parameters in the determinants being assessed.

The logistic regression model described by Equation 6 can be extended to situ-

ations in which the outcome variable is nominal with more than two categories. If

these outcome categories are coded as 0, 1, 2, . . . , c and pk is the probability that an

outcome has the value k, the model takes the form, for 0 � k � c,
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pk =

exp

(
αk +

m∑
j=1

βjkxj

)

1 +
c∑

k=1
exp

(
αk +

m∑
j=1

βjkxj

) , (8)

and is known as polytomous logistic regression* [14].

For ordinal outcomes with more than two levels, the logistic model takes a dif-

ferent form. The outcome categories are again coded as 0, 1, 2, . . . , c but pk is now

the probability that an outcome has value at least k. Thus, for 0 < k � c, these

probabilities are given by

ln

(
pk

1 − pk

)
= αk +

m∑
j=1

βjxj. (9)

This model incorporates an assumption of “proportional odds”, meaning that for

each determinant, the odds ratios are the same at each cut-point k.

Poisson Regression

The Poisson distribution* takes nonnegative integer values with probabilities

pk =
λk

k!
e−λ. (10)

The parameter λ is positive and is the mean of the distribution. This distribution

plays an important role in epidemiological research, particularly in studies in which

different subjects have different durations of exposure to a risk factor.

Suppose that the probability that a subject experiences an adverse event in a short

interval of time δt is constant and equal to µδt. If the outcomes in different intervals

are independent, the number of adverse events in a period T containing N = T/δt

short intervals has a binomial distribution ranging from 0 to N , with probabilities

pk =
N !

k!(N − k)!
(µδt)k(1 − µδt)N−k.

Taking the limit as δt → 0, we obtain the Poisson distribution with parameter

λ = µT .

The Poisson regression* model now arises by expressing the incidence rate µ as

the exponential of a linear function of determinants, that is,
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λ = µT = exp

α +
m∑

j=1

βjxj

 T. (11)

If the determinants are nominal, Poisson regression is a limiting case of logistic

regression, in which the probability of the adverse outcome is infinitesimally small

and the number of subjects is correspondingly large. In logistic regression, each

subject constitutes a separate experimental unit, whereas in Poisson regression an

experimental unit corresponds to a short period of observation on each subject.

In the Poisson model, outcomes are interchangeable in the sense that a group

of subjects has the same combination of risk factors, but only the total number of

adverse events is important.

Proportional Hazards Regression

The Poisson regression model given by Equations 10 and 11 specifies the logarithm

of the incidence density as a linear function of determinants. This incidence rate µ is

the probability that the outcome event of interest occurs in a small interval of time

(t, t + δt) divided by the length of the interval (δt). Equation 11 can thus be written

µ = exp

α +
m∑

j=1

βjxj

 .

In the context of survival analysis, this incidence rate is the hazard function, and is

allowed to depend on the survival time t, simply by allowing the constant parameter

α to be a function of t. This model, due to Cox [8], takes the form

h(t) = h0(t) exp

 m∑
j=1

βjxj

 , (12)

where h0 (t) is an arbitrary function of the survival time t, called the baseline hazard

function. It is called the proportional hazards model*, because the relative risk of an

event for two subjects depends only on their determinants, and not on their duration

of survival.

Note that if failures were known to occur at the times t1, t2, . . . , tq, h0 (t) could

be expressed as a step function with changes at these failure times, and Equation 12

would take the form
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h(t) = exp

( q∑
i=1

αiwi

)
exp

 m∑
j=1

βjxj

 ,

where each wi is an indicator variable taking the value 1 for a failure occurring at

time ti and 0 otherwise. It follows that the proportional hazards model is equivalent

to the special case of a Poisson regression model in which an additional stratification

variable corresponding to the failure time is included.

Correlated Outcomes

All of the statistical methods described in the preceding sections assume that the

outcomes are independent. In practice, data collected in epidemiological studies are

often correlated due to clustering. Spatial clustering occurs when subjects are sampled

from villages or families sharing particular attributes, or when repeated measurements

are taken on the same subjects. Clustering also occurs in time due to seasonal effects.

Standard errors of proportions based on correlated data can be corrected using

variance inflation factors [29], which specify by how much the sample size of a cluster

needs to be increased to compensate for the clustering. In the simplest case, when

the correlations between binary outcomes in clusters of size m have equal correlation

ρ, the variance inflation factor is 1+(m − 1) ρ, and the standard error of the log odds

ratio is increased by the square root of this factor. This formula shows that even

small correlations between outcomes can have a substantial effect in large clusters.

For example, if ρ = 0.1 and m = 31, the standard error is doubled, and the sample

size would need to be quadrupled to compensate for the clustering.

Zeger & Liang [39] invented a general and robust method for handling corre-

lated outcomes, which is now widely used in epidemiological statistics. This method,

known as generalized estimating equations* (GEE), can be applied to all the models

described in this section, and has generated a great deal of research both in statistics

and epidemiology [11].
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